Dirichlet Distribution

It is a multivariate generalization of the beta distribution. A k-dimensional Dirichlet random variable x can take values in the (k1)-simplex (a k-vector x lies in the (k1)-simplex if xi0, ki=1xi=1).

PDF:

f(x1,,xK;α1,,αK)=1B(α)i=1Kxαi1i

where the parameter α is a k-vector with components αi>0 and the multivariate Beta function acts as the normalizing constant:

B(α)=Ki=1Γ(αi)Γ(Ki=1αi)

It's the conjugate prior of the multinomial distribution.

Properties:

E(xi)=αiKk=1αk

Var(xi)=αi(Kk=1αkαi)(Kk=1αk)2(Kk=1αk+1)

In symmetric Dirichlet distribution (where all of the elements making up the parameter vector α have the same value):
illustration-dir.png

General examples:
QQ20160905-0@2x.png

Reference

Dirichlet distribution: https://en.wikipedia.org/wiki/Dirichlet_distribution
Nonparametric Baysian Models: http://videolectures.net/mlss09uk_teh_nbm/
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of machine Learning research 3.Jan (2003): 993-1022.